

Choosing the proper NMR experiment

A walkthrough of the available experiments at the Leuven Chem&Tech Liquid NMR Core Facilities.

Gert Steurs 10 May 2021

Choosing an experiment

IconNMR: Automat	tion Mar17-2021-142	9-nmrsu												_ <u>_</u> 2
<u>F</u> ile <u>R</u> un Ho <u>l</u> de	er <u>V</u> iew Fi <u>n</u> d <u>P</u> ara	meters Options	<u>T</u> ools <u>H</u> elp											
🎇 Start 🌗	NA 😝 😫	i 🔊												
Experiment Table	A													
Holder Type	Status	Name	No.	Solvent	Experiment				Pri	Par	Title/Orig	Time	User	Start Time
▶1 U	AutoCalibrate												1	06:30 Mon May 03 2021
▶ 2	Available													8
⊳зЦ	Available													
▶ 4	Available													
▶ 5	Available													
▶ 6	Available													
▶ 7	Available													
▶ 8	Available													
⇒ 9 (f − 1	Available													
1er	Available		-	CDCI3	N 1D 1H (30)	1D 1H exp. using 3	0 deg. flip angle	[zg30]	- * 🗿	= + 4			MolDesig	Set Start Time
▶ 10	Available				N 1D 1H (30)	1D 1H exp.	using 30 deg.	flip angle [zg30]					-	
▶ 11 U	Available				N 1D 1H QNMR (30	 1D 1H exp. 1D 1H exp. 	for QNMR using	30 deg. flip angle	[zg30]					
▶ 12	Available				N 1D 1H (PR) N 1D 1H (GPPRLD)	1D 1H exp. 1D 1H exp.	with H2O suppr with H2O suppr	ession via fl presa ession via NOE [noe	turation [zgpr] sygpprld]					
▶ 13	Available				N 1D 7Li (30)	1D 7Li exp.	using 30 deg.	flip angle [zg30]					_	
▶ 14	Available				N 1D 11B(1H) (PO	G) 1D 11B (1H)	exp. with powe	r-gated decoupling	[zgpg]					
▶ 15	Available				N 1D 13C(1H) (PO N 1D 13C (GD30)	<pre>330) 1D 13C(1H) 1D 13C(1H)</pre>	exp. with powe exp. with gate	r-gated decoupling d decoupling and 30	and 30 deg. flip a deg. flip angle	ngle [zgpg30] zgpg30]				
Þ 16	Available				N 1D 13C(1H) (IC	330) 1D 13C(1H)	exp. with inve	rse-gated decouplin	ig and 30 deg. flip	angle [zgpg30	01			
▶ 17	Available				N 1D 13C(1H) DE	PT90 (SP) 1D 13C(1	H} DEPT90 exp.	using shaped pulse	s [deptsp90]					
▶ 18	Available				N 1D 13C(1H) DE	PT45 (SP) 1D 13C{1 PTQ135 (GPSP) 1D 1	H) DEPT45 exp. 3C{1H} DEPTQ13	5 exp. using gradie	es [deptsp45] ent and shaped puls	es [deptqqpsp]	r.			
▶ 19	Available				N 1D 13C(1H) AP'	T 1D 13C(1H) 1D 19F exp.	APT exp. [jmod [zaflan]	1						
					N 1D 19F{1H} (IC	G) 1D 19F{1H}	exp. with inve	rse-gated decouplin	g [zgfhigqn.2]				_	•
C. basib		C 414	Balata		N 1D 29Si	1D 27AI exp 1D 29Si exp	. [zg]						-	
Submit	Cancel	Ealt	Delete	<u>A</u> aa	- <u>-</u>	•							_	Change User
Preceding Experi	ments													
# Date	Hol N	ame	No	Exper	iment	MTA bool	Lock Shim	Acq	Proc User	Disk		Title/Orig		Remarks
, butt	1101111 11		110	- Lines	intene	2000 /////	LOCK DIMIT	1104		Disk		macrong		Trentaria.
1												_		
								lass			1			
Search Precedin	Ig		~~~~					298	BACS/SampleC	ase/Pro (RS232)	Busy until: No	Jobs! Day	: 00:00 Nig	IL:52
📲 🐽 🍐 Bruk	ker TopSpin 3.6.3 on CZ	C5280WR] 🐘 🖕 Ico	nNMR: spect		LoonNMR: Autom	ation Mar17-2021-142	topspin3.6.3	: cpr - Konsole			8	🕽 👔 🐰 us	<	Wednesday, April 28, 2021 Brussels

Icon-NMR Codes

Icon-NMR Code	Meaning	Icon-NMR Code	Meaning
30	Using a 30 degree flip angle	PH	Acquisition for phase-sensitive spectra
PR	With presaturation	LR	Optimized for long-range coupling
GP	Using gradient pulses	ED	With multiplicity-editing
LD	Using <u>l</u> ow power CPD <u>d</u> ecoupling	ET	Acquisition for phase-sensitive spectra using <u>echo/antiecho-TPPI method</u>
PG	Using power-gated decoupling	SI	With sensitivity-improvement
GD	Using gated-decoupling	ADIA	Using adiabatic pulses
IG	Using inverse-gated decoupling	LP	With low-pass J-filter
SP	Using <u>s</u> haped <u>p</u> ulses	L3	With <u>three</u> -fold <u>low-pass</u> <i>J</i> -filter
PP	Using <u>purge</u> <u>pulses</u>	ND	With no decoupling during acquisition
QF	Acquisition for magnitude mode (<u>qf</u>) spectra	LOCK	Using ² H lock channel (for ² H acquisition)
DF	Using a <u>d</u> ouble-quantum <u>f</u> ilter	X{Y}	X-observed experiment with Y-decoupling during acquisition

Icon-NMR Codes – examples

Icon-NMR Name	Meaning				
1D 1H (30)	1D ¹ H exp. with a <u>30</u> degree flip angle [zg30]				
1D 1H (GPPRLD)	1D ¹ H exp. with gradient pulses, presaturation and low-power CPD decoupling [noesygpprId]				
1D 13C{1H} (PG30)	1D ¹ H-decoupled ¹³ C exp. with <u>power-gated</u> decoupling and a <u>30</u> degree flip angle [zgpg30]				
1D 19F{1H} (IG)	1D ¹ H-decoupled ¹⁹ F exp. with <u>inverse-gated decoupling</u> [zgfhigqn.2]				
2D 1H-1H COSY (GPPPQF)	2D ¹ H- ¹ H COSY exp. with gradient pulses and purge pulses, which acquires data for magnitude mode (<u>of</u>) spectra [cosygpppqf]				
2D 1H-13C HSQC-DEPT (EDETGPSISP2.2ADIA)	2D ¹ H- ¹³ C HSQC-DEPT exp. with multiplicity- <u>ed</u> iting, phase- sensitive acquisition using <u>e</u> cho/antiecho- <u>T</u> PPI method, <u>g</u> radient <u>pulses</u> , <u>sensitivity improvement</u> , <u>shaped pulses</u> and <u>adia</u> batic pulses [hsqcedetgpsisp2.2]				

Icon-NMR Codes

Bruker TopSpin 4.1.1 on SET-L-DI-02985 as u0110721 [Academic License] — 🗇 🗙							
Encises Analyse Applications Manage Process Analyse Applications Process							
L Proc. Spectrum - Adjust Phase - Ad							
2D *2 ◆ ↔ [©] , ₭₦ ○ [©] , ₩ ♥ * * [™] / _™ [±] _№ [™] / _№ 3D /2 [±] / ₂ [©] [©] , [™] / _™ [™] / _♥ [™] / _№ [™] / _№	2D *2						
SPECTRUM PROCPARS ACQUPARS	TITLE PULSEPROG PEAKS INTEGRALS SAMPLE STRUCTURE PLOT FID						
Search: Find S J JS E							
Thesis Ilan File: zgpg30 (C:\Workdir\Programs\Bruker\T	opSpin4.1.1\exp\stan\nmr\lists\pp)						
<pre># internsnip Ar-1 umerones # ranker Avance III HD 400 # Admin-H-sensitivity-01EB # Admin-Acontine-5.6mg-01052021 # Admin-Acontine-5.6mg-CDC13 # Admin-Acontine-5.6mg-DO_NOT_REMOVE # Admin-Acontine-5.6mg-DO_NOT_REMOVE # Admin-Scilla - Sing-OD_NOT_REMOVE # 21 - zgig30 - # 20 - zgp330 - # 21 - zgig30 - # Admin-Galantamine-4.7mg-01052021 # Include <avance.incl> # include <delay.incl> # dil=30m"</delay.incl></avance.incl></pre>	upling				^		
"p0=p1/3"							
"DELTA=dl-l00m"							
No structure available. "acgt0=-tan((p0/p1)*(PI/4))*p1*2/1	۲°.						
1 ze							
2 30m do:f2							
10u p113:f2							
dl1 cpd2:f2 DELTA							
	LL_Admin-GS-SINO-13C-Bruker-AVIIIHD400 20 1 "C:\Users\u0110721\OneDrive - KU Leuven\N				*		

1D experiments

1D experiments

1D experiment times per nucleus (h)

On the Bruker Avance III HD 400 over the past 75 days.

¹³C experiments

- Available 1D ¹³C-detected experiments
 - Regular experiments
 - 1D 13C{1H} (PG30) [zgpg30]
 - 1D 13C (GD30) [zggd30]
 - 1D 13C{1H} (IG30) [zgig30]
 - Multiplicity-edited experiments due to 180° phase shifts ("peaks are up or down")
 - 1D 13C{1H} DEPT135 (SP) [deptsp135]
 - 1D 13C{1H} DEPT90 (SP) [deptsp90]
 - 1D 13C{1H} DEPT45 (SP) [deptsp45]
 - 1D 13C{1H} DEPTQ135 (GPSP) [deptqgpsp]
 - 1D 13C{1H} APT [jmod]

¹³C experiments – Decoupling

- Saturating ¹H during acquisition time (AQ) of ¹³C experiment causes C-H multiplets to collapse into singlets
- \Rightarrow Spectrum becomes simplified
- \Rightarrow Higher SINO, as singlet area should remain equal to multiplet area

¹³C experiments – Decoupling


```
(a) <sup>13</sup>C is boosted by 3 <sup>1</sup>H's. (b) <sup>13</sup>C is boosted by 1 <sup>1</sup>H.
```

- Saturating ¹H during relaxation delay (d1) of ¹³C experiment causes NOE to build up. This NOE will enhance ¹³C signals according to number of ¹H nuclei close to (attached to) the ¹³C's.
- \Rightarrow ¹³C intensity is boosted according to number of ¹H's close to (~ attached to) the ¹³C atom
- \Rightarrow NOE-enhanced spectra must NOT be integrated (\Rightarrow no quantification!!)

¹³C experiments – PG, GD and IG

Power-Gated decoupling (1D 13C{1H} (PG30))

- Singlets (decoupling during AQ)
- ✓ Highest SINO (NOE enhancement + decoupling during AQ)
- × Not quantifiable (NOE enhancement)
- ✓ Fast

Gated Decoupling (1D 13C (GD30))

- Multiplets (no decoupling during AQ)
- × Lowest SINO (only NOE enhancement)
- × Not quantifiable (NOE enhancement)
- × Slow

Inverse-Gated decoupling (1D 13C{1H} (IG30))

- Singlets
- × Lower SINO (only decoupling during AQ)
- ✓ Quantifiable (no NOE enhancement)
- Intermediate time

¹³C experiments

- Available 1D ¹³C-detected experiments
 - Regular experiments
 - 1D 13C{1H} (PG30) [zgpg30]
 - 1D 13C (GD30) [zggd30]
 - 1D 13C{1H} (IG30) [zgig30]
 - Multiplicity-edited experiments due to 180° phase shifts ("peaks are up or down")
 - 1D 13C{1H} DEPT135 (SP) [deptsp135]
 - 1D 13C{1H} DEPT90 (SP) [deptsp90]
 - 1D 13C{1H} DEPT45 (SP) [deptsp45]
 - 1D 13C{1H} DEPTQ135 (GPSP) [deptqgpsp]
 - 1D 13C{1H} APT [jmod]

¹³C experiments – DEPT

- DEPT experiments
 - More sensitive than regular ¹³C{¹H} (zgpg30) experiment for protonated carbons
 - Automation
 - 1D 13C{1H} DEPT135 (SP) [deptsp135]
 - CH & CH₃ positive, CH₂ negative, no C_q
 - 1D 13C{1H} DEPT90 (SP) [deptsp90]
 - CH only
 - 1D 13C{1H} DEPT45 (SP) [deptsp45]
 - CH, CH₂ & CH₃ positive, no C_q

¹³C experiments – DEPTQ and APT

- DEPTQ
 - More / less sensitive than regular ¹³C{¹H} (zgpg30) experiment for protonated / quaternary carbons, resp.
 - Automation
 - 1D 13C{1H} DEPTQ135 (GPSP) [deptqgpsp]
 - CH & CH₃ positive, CH₂ & C_q negative
- APT
 - Less sensitive than regular ¹³C{¹H} (zgpg30) experiment
 - Automation
 - 1D 13C{1H} APT [jmod]
 - CH & CH₃ positive, CH₂ & C_q negative

Reminder

- SINO increases with $\sqrt{NS!}$
- To double the SINO, four times more scans need to be recorded

2D experiments

2D acquisition

2D acquisition

Parameters in 2D

- Most important parameters in 2D experiments include
 - NS: the number of scans per slice
 - TD: number of data points recorded (in both dimensions)
 - AQ: acquisition time (in both dimensions, sec)
 - SW: spectral width (in both dimensions, ppm)
 - O1P: carrier frequency = middle of the spectrum (in both dimensions, ppm)
- As for 1D spectra,
 - <u>Resolution</u> is determined by TD (or AQ)
 - <u>SINO</u> is determined by NS*

Obtaining better 2D data – more NS?

- Need for high NS in 1D (for indirect nucleus) does <u>not</u> presuppose need for high NS in 2D!
- As for 1D, recording NS more scans, increases SINO with \sqrt{NS}
- Increasing number of slices in 2D (= TD(F1) = 1TD) increases resolution in F1 (vertical) dimension, but also
 - More resolution = narrower lines = higher signal (narrower signal with same integration area = higher signal) ⇒ higher SINO*
 - Amount of overall signal in 2D matrix increases \Rightarrow higher SINO
- Optimal values for most applications are already set in Icon-NMR for each experiment! Don't just start adjusting parameters at random!

Finding your way in the 2D space

- Most common 2D experiments
 - HSQC
 - ${}^{1}\text{H}{}^{-13}\text{C} {}^{1}J_{CH}$ heteronuclear bond correlations
 - "¹H and ¹³C that are directly attached"
 - HMBC
 - ${}^{1}\text{H}{}^{-13}\text{C} {}^{2-3}J_{CH}$ heteronuclear bond correlations
 - "¹H and ¹³C that are 2 to 3 bonds separated"
 - COSY
 - ¹H-¹H homonuclear bond correlations
 - "Two (or more) ¹H's that couple with each other" H_{N}
 - NOESY
 - ¹H-¹H correlations through space (< 5 Å) and ¹H-¹H exchange (chemical or rotational)
 - "¹H's that are close in space or exchange with one another"

HSQC

2D 1H-13C HSQC-DEPT (EDETGPSISP2.2ADIA)

- Very sensitive experiment (here even sensitivity-improved!!)
- Typical NS = 1-4 (1*n)
- Typical TD(F1) = 128
- Multiplicity-edited = also DEPT information in cross peaks (positive/negative)
- ¹³C-decoupled (no multiplicities visible in cross peaks)
- Use this for routine experiments

2D 1H-13C HSQC (ETGPSP.3)*

- Less sensitive
- Typical NS = 2-8 (1*n)
- Typical TD(F1) = 128
- Not multiplicity-edited
- ¹³C-decoupled (no multiplicities visible in cross peaks)
- For ¹³C-labeled molecules!
- Do not use this for routine experiments

KU LEUVEN

43 Experiment: HSQC (EDETGPSISP2.2ADIA).

- Important!
 - The acquisition time in the direct dimension (AQ) must <u>NEVER</u> be higher than 0.2 sec, so be very careful when changing AQ (or TD)!!
 - Due to ¹³C-decoupling during the acquisition time (AQ), the probe would overheat and be destroyed after a few scans!
 - HSQC experiments with AQ > 0.2 sec will automatically be aborted

2D 1H-13C HMBC (GPLPNDQF)

- More sensitive
- Magnitude mode
- Typical NS = 2-4 (2*n)
- Typical TD(F1) = 128
- Not decoupled
- 1-fold J-filter: more HSQC residuals
- Meant to obtain high SINO spectra

2D 1H-13C HMBC (ETGPL3ND)

- Somewhat less sensitive
- Phase sensitive
- Typical NS = 2-8 (2*n)
- Typical TD(F1) = 128-256
- Not decoupled
- 3-fold J-filter: less to no HSQC residuals
- Meant to obtain high-res spectra

HMBC

Sample: 4.7 mg galanthamine in CDCl₃ (33 mM)

galanthamine

COSY

2D 1H-1H COSY (GPPPQF)

- Regular COSY
- Magnitude mode
- Highly sensitive
- Typical NS = 1-2 (1*n)
- Typical TD(F1) = 128
- Lot of overlap with diagonal
- Meant to obtain high SINO spectra

2D 1H-1H DQF-COSY (GPDFPHPP)

- DQF-COSY
- Phase-sensitive
- Somewhat less sensitive
- Typical NS = 2-4 (1*n)
- Typical TD(F1) = 128-256
- Less overlap with diagonal
- Meant to obtain high-res spectra

2D 1H-1H LR-COSY (GPLRPPQF)

- LR-COSY
- Magnitude mode
- Less sensitive
- Typical NS = 2-8 (1*n)
- Typical TD(F1) = 128
- Meant to visualize longrange ¹H-¹H couplings via d6 = $\frac{1}{2J}$ (0.1-0.4 sec)

KU LEUVEN

• 2D 1H-1H NOESY (GPPHPP)

- Phase-sensitive
- Somewhat less sensitive
- Typical NS = 2-8 (2*n)
- Typical TD(F1) = 128
- Two types of information in one spectrum*
 - Cross peaks with opposite phase (= color) of diagonal peaks
 - ¹H's that are close in space (< 5 Å)
 - Cross peaks with same phase (= color) as diagonal peaks
 - Chemical exchange
 - Rotational exchange

• Traditional acquisition (uniform sampling): collect all TD(F1) slices in indirect dimension, FT in both dimensions

KU LEUVEN

 NUS = Non-Uniform Sampling acquisition: collect random fraction of TD(F1) slices in indirect dimension, reconstruct the missing slices and FT in both dimensions

Raw data with 8 slices recorded.

Reconstructed raw data with 32 slices (8 recorded, 24 calculated).

 NUS = Non-Uniform Sampling acquisition: collect random fraction of TD(F1) slices in indirect dimension, reconstruct the missing slices and FT in both dimensions

KU LEUVEN

- Advantages of NUS
 - Higher resolution in F1 in same amount of time, or
 - Same resolution in F1 in much less time
- Example
 - TD(F1) = 1024 with 25 % NUS: only 256 slices (25 %) will really be recorded and 768 additional slices will be calculated during reconstruction. The reconstructed raw data contain 1024 data points.

KU LEUVEN

- Acquisition in Icon-NMR
 - Select appropriate 2D experiment
 - Set FNTYPE = 2 (standard 0 = traditional acquisition, 2 = NUS acquisition)
 - Set NUSAMOUNT = <desired percentage of NUS sampling>
 - Percentage (0-100)
 - Amount of NUS sampling
 - Fraction of TD(F1) that will really be recorded

1TD	128		Size of fid (F1)
2TD	2048		Size of fid (F2)
DS	16		Number of dummy scans
NS	4		Number of scans
1SW	220	[ppm]	Spectral width (F1)
2SW	12.9882	[ppm]	Spectral width (F2)
AQ	0.197018	[sec]	Acquisition time
O1P	6.300	[ppm]	Transmitter frequency offset
D1	1.5	[sec]	Delay for T1 (1-5 * T1)
D6	0		Delay for evolution of long-range coupling (LR-COSY, 1/(2J))
D8	0		Mixing time
FNTYPE	0		nD acquisition mode (= 0 for traditional; = 2 for NUS)
NUSAMOUNT	50		Amount of sparse sampling
OK			

- Processing
 - Regular processing can be used
 - No license needed for basic 2D NUS processing (≥ TopSpin 3.5pl7)
 - TopSpin will display warning, saying you have no license for NUS processing, so the standard settings will be used (Compressed Sensing (CS) algorithm via Iterative Soft Thresholding (IST)). Just click OK.

- Processing
 - If spectrum is <u>phase-sensitive</u>, no phasing can be performed immediately after NUS processing, as imaginary parts of 2D processed data (2ir, 2ii) are not saved after NUS reconstruction.
 - To solve this problem: use Hilbert transform in F2 (**xht2**) to recalculate imaginary data
 - Now phasing is possible
 - Hilbert transform is necessary before phasing after Fourier transform

۲	×
8	Cannot phase rows, imaginary part 2ir is missing
	Close Details

- When can I use NUS?
 - Sufficient SINO
 - Small to medium dynamic range of peaks
 - Large dynamic range can result in artifacts when undersampling
 - Don't forget to take impurities into consideration!
 - \Rightarrow HSQC of pure compound: definitely!
 - \Rightarrow NOESY of mixture: more challenging
- How many FIDs should I record?

 - NUSPOINTS = $\frac{\frac{NUSAMOUNT}{100} * TD(F1)}{2}$
 - NUSPOINTS should be ≥ number of peaks in the spectrum (again, don't forget to take peaks from impurities into consideration!)

Thank you

