

Choosing the proper NMR experiment

A walkthrough of the available experiments at the Leuven Chem&Tech Liquid NMR Core Facilities.

Gert Steurs 10 May 2021

Choosing an experiment

Icon-NMR Codes

Icon-NMR Codes – examples

Icon-NMR Codes

1D experiments

1D experiments

1D experiment times per nucleus (h)

On the Bruker Avance III HD 400 over the past 75 days.

13C experiments

- Available 1D ¹³C-detected experiments
	- Regular experiments
		- 1D 13C{1H} (PG30) [zgpg30]
		- 1D 13C (GD30) [zggd30]
		- 1D 13C{1H} (IG30) [zgig30]
	- Multiplicity-edited experiments due to 180° phase shifts ("peaks are up or down")
		- 1D 13C{1H} DEPT135 (SP) [deptsp135]
		- 1D 13C{1H} DEPT90 (SP) [deptsp90]
		- 1D 13C{1H} DEPT45 (SP) [deptsp45]
		- 1D 13C{1H} DEPTQ135 (GPSP) [deptqgpsp]
		- 1D 13C{1H} APT [jmod]

¹³C experiments – Decoupling

- Saturating ¹H during acquisition time (AQ) of ¹³C experiment causes C-H multiplets to collapse into singlets
- \Rightarrow Spectrum becomes simplified
- \Rightarrow Higher SINO, as singlet area should remain equal to multiplet area

¹³C experiments – Decoupling


```
(a) 13C is boosted by 3 1H's. (b) 13C is boosted by 1 1H.
```
- Saturating ¹H during relaxation delay (d1) of ¹³C experiment causes NOE to build up. This NOE will enhance ¹³C signals according to number of ¹H nuclei close to (attached to) the 13 C's.
- \Rightarrow ¹³C intensity is boosted according to number of ¹H's close to (~ attached to) the ¹³C atom
- \Rightarrow NOE-enhanced spectra must NOT be integrated (\Rightarrow no quantification!!)

¹³C experiments – PG, GD and IG

Power-Gated decoupling (1D 13C{1H} (PG30))

- Singlets (decoupling during AQ)
- \checkmark Highest SINO (NOE enhancement + decoupling during AQ)
- Not quantifiable (NOE enhancement)
- $\sqrt{ }$ Fast

Gated Decoupling (1D 13C (GD30))

- Multiplets (no decoupling during AQ)
- Lowest SINO (only NOE enhancement)
- Not quantifiable (NOE enhancement)
- Slow

Inverse-Gated decoupling (1D 13C{1H} (IG30))

- **Singlets**
- Lower SINO (only decoupling during AQ)
- \checkmark Quantifiable (no NOE enhancement)
- Intermediate time

13C experiments

- Available 1D ¹³C-detected experiments
	- Regular experiments
		- 1D 13C{1H} (PG30) [zgpg30]
		- 1D 13C (GD30) [zggd30]
		- 1D 13C{1H} (IG30) [zgig30]
	- Multiplicity-edited experiments due to 180° phase shifts ("peaks are up or down")
		- 1D 13C{1H} DEPT135 (SP) [deptsp135]
		- 1D 13C{1H} DEPT90 (SP) [deptsp90]
		- 1D 13C{1H} DEPT45 (SP) [deptsp45]
		- 1D 13C{1H} DEPTQ135 (GPSP) [deptqgpsp]
		- 1D 13C{1H} APT [jmod]

¹³C experiments – DEPT

- DEPT experiments
	- More sensitive than regular ¹³C{¹H} (zgpg30) experiment for protonated carbons
	- Automation
		- 1D 13C{1H} DEPT135 (SP) [deptsp135]
			- CH & CH₃ positive, CH₂ negative, no C_q
		- 1D 13C{1H} DEPT90 (SP) [deptsp90]
			- CH only
		- 1D 13C{1H} DEPT45 (SP) [deptsp45]
			- CH, CH₂ & CH₃ positive, no C_q

¹³C experiments – DEPTQ and APT

- DEPTQ
	- More / less sensitive than regular ¹³C{¹H} (zgpg30) experiment for protonated / quaternary carbons, resp.
	- Automation
		- 1D 13C{1H} DEPTQ135 (GPSP) [deptqgpsp]
			- CH & CH₃ positive, CH₂ & C_q negative
- APT
	- Less sensitive than regular ${}^{13}C{}^{1}H$ (zgpg30) experiment
	- Automation
		- 1D 13C{1H} APT [jmod]
			- CH & CH₃ positive, CH₂ & C_q negative

Reminder

- \cdot SINO increases with $\sqrt{NS!}$
- To double the SINO, four times more scans need to be recorded

2D experiments

2D acquisition

2D acquisition

Parameters in 2D

- Most important parameters in 2D experiments include
	- NS: the number of scans per slice
	- TD: number of data points recorded (in both dimensions)
	- AQ: acquisition time (in both dimensions, sec)
	- SW: spectral width (in both dimensions, ppm)
	- O1P: carrier frequency = middle of the spectrum (in both dimensions, ppm)
- As for 1D spectra,
	- Resolution is determined by TD (or AQ)
	- SINO is determined by NS*

Obtaining better 2D data – more NS?

- Need for high NS in 1D (for indirect nucleus) does not presuppose need for high NS in 2D!
- As for 1D, recording NS more scans, increases SINO with \sqrt{NS}
- Increasing number of slices in $2D (= TD(F1) = 1TD)$ increases resolution in F1 (vertical) dimension, but also
	- More resolution = narrower lines = higher signal (narrower signal with same integration area = higher signal) \Rightarrow higher SINO*
	- Amount of overall signal in 2D matrix increases \Rightarrow higher SINO
- Optimal values for most applications are already set in Icon-NMR for each experiment! Don't just start adjusting parameters at random!

Finding your way in the 2D space

- Most common 2D experiments
	- HSQC
		- ¹H-¹³C ¹J_{CH} heteronuclear bond correlations
		- "¹H and ¹³C that are directly attached"
	- HMBC
		- ¹H-¹³C ²⁻³J_{CH} heteronuclear bond correlations
		- "¹H and ¹³C that are 2 to 3 bonds separated"
	- COSY
		- ¹H-¹H homonuclear bond correlations
		- "Two (or more) ¹H's that couple with each other"
	- NOESY
		- $1H-1H$ correlations through space (< 5 Å) and $1H-1H$ exchange (chemical or rotational)
		- " ¹H's that are close in space or exchange with one another"

 $\begin{array}{ccc}\n0 & \text{HC} \\
\downarrow & \downarrow \\
\downarrow & \downarrow\n\end{array}$ OH

HSQC

2D 1H-13C HSQC-DEPT (EDETGPSISP2.2ADIA)

- Very sensitive experiment (here even sensitivity-improved!!)
- Typical $NS = 1-4 (1[*]n)$
- Typical $TD(F1) = 128$
- Multiplicity-edited = also DEPT information in cross peaks (positive/negative)
- ¹³C-decoupled (no multiplicities visible in cross peaks)
- Use this for routine experiments

2D 1H-13C HSQC (ETGPSP.3)*

- Less sensitive
- Typical $NS = 2-8$ (1*n)
- Typical $TD(F1) = 128$
- Not multiplicity-edited
- ¹³C-decoupled (no multiplicities visible in cross peaks)
- For ¹³C-labeled molecules!
- Do not use this for routine experiments

43 Experiment: HSQC (EDETGPSISP2.2ADIA).

- Important!
	- The acquisition time in the direct dimension (AQ) must **NEVER** be higher than 0.2 sec, so be very careful when changing AQ (or TD)!!
	- Due to ¹³C-decoupling during the acquisition time (AQ), the probe would overheat and be destroyed after a few scans!
	- HSQC experiments with AQ > 0.2 sec will automatically be aborted

2D 1H-13C HMBC (GPLPNDQF)

- More sensitive
- Magnitude mode
- Typical $NS = 2-4 (2[*]n)$
- Typical $TD(F1) = 128$
- Not decoupled
- 1-fold *J*-filter: more HSQC residuals
- Meant to obtain high SINO spectra

2D 1H-13C HMBC (ETGPL3ND)

- Somewhat less sensitive
- Phase sensitive
- Typical $NS = 2-8 (2[*]n)$
- Typical $TD(F1) = 128 256$
- Not decoupled
- 3-fold *J*-filter: less to no HSQC residuals
- Meant to obtain high-res spectra

HMBC

Sample: 4.7 mg galanthamine in $CDCI₃$ (33 mM)

galanthamine

COSY

2D 1H-1H COSY (GPPPQF)

- Regular COSY
- Magnitude mode
- Highly sensitive
- Typical $NS = 1-2 (1[*]n)$
- Typical $TD(F1) = 128$
- Lot of overlap with diagonal
- Meant to obtain high SINO spectra

2D 1H-1H DQF-COSY (GPDFPHPP)

- DQF-COSY
- Phase-sensitive
- Somewhat less sensitive
- Typical $NS = 2-4 (1[*]n)$
- Typical $TD(F1) = 128 256$
- Less overlap with diagonal
- Meant to obtain high-res spectra

2D 1H-1H LR-COSY (GPLRPPQF)

- LR-COSY
- Magnitude mode
- Less sensitive
- Typical $NS = 2-8$ (1*n)
- Typical $TD(F1) = 128$
- Meant to visualize longrange 1H-¹H couplings $via\, d6 =$ 1 $2J$ (0.1-0.4 sec)

• **2D 1H-1H NOESY (GPPHPP)**

- Phase-sensitive
- Somewhat less sensitive
- Typical $NS = 2-8$ $(2[*]n)$
- Typical $TD(F1) = 128$
- Two types of information in one spectrum*
	- Cross peaks with opposite phase (= color) of diagonal peaks
		- ¹H's that are close in space $(< 5 \text{ Å})$
	- Cross peaks with same phase (= color) as diagonal peaks
		- Chemical exchange
		- Rotational exchange

• Traditional acquisition (uniform sampling): collect all TD(F1) slices in indirect dimension, FT in both dimensions

• NUS = **N**on-**U**niform **S**ampling acquisition: collect random fraction of TD(F1) slices in indirect dimension, reconstruct the missing slices and FT in both dimensions

Raw data with 8 slices recorded. Reconstructed raw data with 32 slices (8 recorded, 24 calculated).

• NUS = **N**on-**U**niform **S**ampling acquisition: collect random fraction of TD(F1) slices in indirect dimension, reconstruct the missing slices and FT in both dimensions

- Advantages of NUS
	- Higher resolution in F1 in same amount of time, *or*
	- Same resolution in F1 in much less time
- Example
	- $TD(F1) = 1024$ with 25 % NUS: only 256 slices (25 %) will really be recorded and 768 additional slices will be calculated during reconstruction. The reconstructed raw data contain 1024 data points.

- Acquisition in Icon-NMR
	- Select appropriate 2D experiment
	- Set FNTYPE = 2 (standard 0 = traditional acquisition, 2 = NUS acquisition)
	- Set NUSAMOUNT = <desired percentage of NUS sampling>
		- Percentage (0-100)
		- Amount of NUS sampling
		- Fraction of TD(F1) that will really be recorded

- Processing
	- Regular processing can be used
	- No license needed for basic 2D NUS processing (≥ TopSpin 3.5pl7)
	- TopSpin will display warning, saying you have no license for NUS processing, so the standard settings will be used (Compressed Sensing (CS) algorithm *via* Iterative Soft Thresholding (IST)). Just click OK.

- Processing
	- If spectrum is phase-sensitive, no phasing can be performed immediately after NUS processing, as imaginary parts of 2D processed data (2ir, 2ii) are not saved after NUS reconstruction.
	- To solve this problem: use Hilbert transform in F2 (**xht2**) to recalculate imaginary data
	- Now phasing is possible
	- Hilbert transform is necessary before phasing after Fourier transform

- When can I use NUS?
	- Sufficient SINO
	- Small to medium dynamic range of peaks
		- Large dynamic range can result in artifacts when undersampling
		- Don't forget to take impurities into consideration!
	- \Rightarrow HSQC of pure compound: definitely!
	- \Rightarrow NOESY of mixture: more challenging
- How many FIDs should I record?

NUSAMOUNT $\frac{11}{100} * TD(F1)$

- NUSPOINTS = 2
- NUSPOINTS should be ≥ number of peaks in the spectrum (again, don't forget to take peaks from impurities into consideration!)

Thank you

