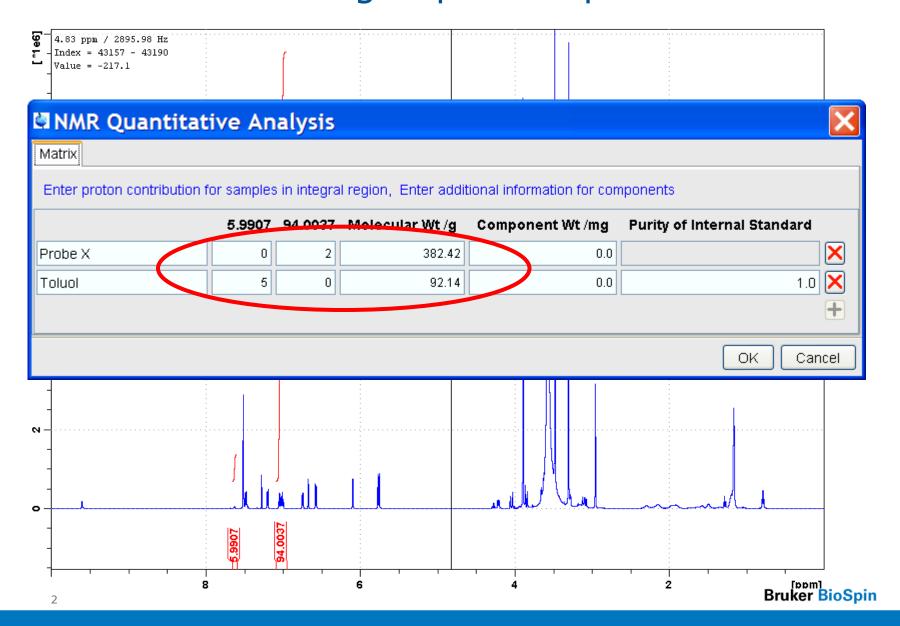
Quantitative NMR Tutorial Commands: [nmrq], [nmrquant]



We can quantify three different scenarios:

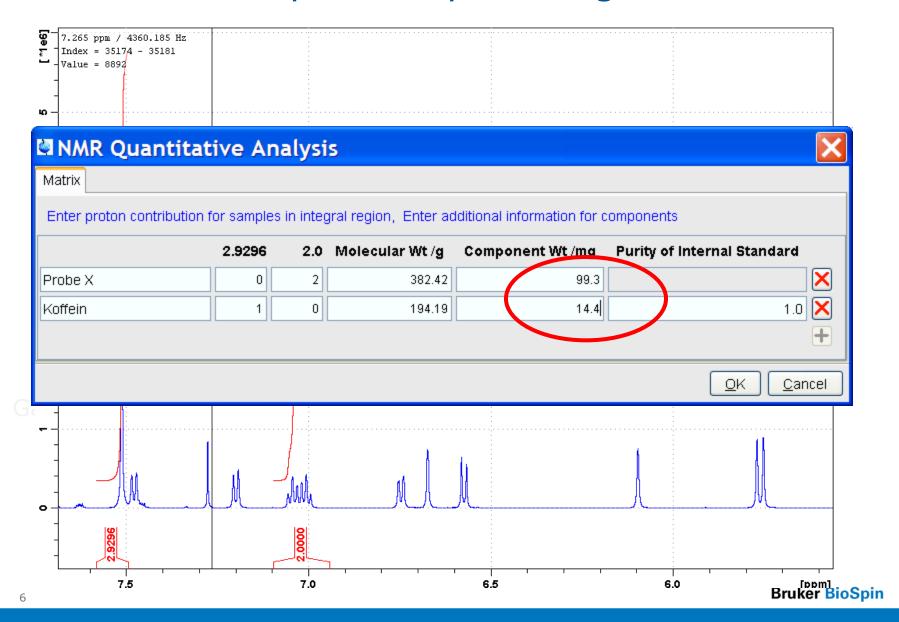
- We know the molecular weight and the proton distribution of the integral ranges.
 - → We can calculate mass content.
- We know the molecular weight, the proton distribution and the amount of substance.
 - → We can calculate relative amount of substances.
- We know the molecular weight, the proton distribution and the amount of substance and we know the purity of a reference compound.
 - → We can calculate relative amount and purity of substances.

Quantitative NMR [nmrq], [nmrquant] Scenario 1a: one integral per component

Quantitative NMR [nmrq], [nmrquant] Scenario 1a: one integral per component

8								
9								
10	Comp	onent 1	Mass	Mole	Integral	Number	Mw	
11			% (w/w)	%		of H	(g/mol)	
12								
13	Prob	e X	99.39	97.5142	94.0037	2	382.4200	
14	Tolu	ol	0.61	2.4858	5.9907	5	92.1400	
15								
16	'Pro	be X' ha	s a mass	content of	99.39	% (w/w)		
17	' Tol	uol ' ha	s a mass	content of	0.61	% (w/w)		
18								
19	The	contribu	tions of	all compon	ents have	been added	up to 100	(w/w) 8
20								
21	No	Low	High	Slope	Bias	Integral	Obs-Calc	Number
22								of H
23								
24	1	7.655	7.598	0.000	0.000	5.9907	0.000	5
25	2	7.094	6.946	0.000	0.000	94.0037	0.000	2
26								

Quantitative NMR [nmrq], [nmrquant] Scenario 1b: several integrals per component


Quantitative NMR [nmrq], [nmrquant] Scenario 1b: several integrals per component

9							
10	Component	Mass	Mole	Integral	Number	Mw	
11		% (w/w)	8		of H	(g/mol)	
12							
13	Probe X	99.38	97.4955	279.3660	D 6	382.420	0
14	Toluol	0.62	2.5045	5.990	7 5	92.1400	l
15							
16	'Probe X'	has a mass	content of	99.38	% (w/w)		
17	'Toluol '	has a mass	content of	0.62	% (w/w)		
18							
19	The contr	ibutions of	all compon	ents have l	been added	up to 100	% (w/w)
20							
21	No Low	High	Slope	Bias I	Integral	Obs-Calc	Number
22							of H
23							
24	1 7.6	55 7.598	0.000	0.000	5.9907	0.000	5
25	2 7.23	25 7.178	0.000	0.000	45.6713	0.970	1
26	3 7.09	6.946	0.000	0.000	94.0037	-0.721	2
27	4 6.6	02 6.546	0.000	0.000	46.6452	-0.004	1
28	5 5.79	95 5.726	0.000	0.000	93.0458	0.237	2

Bruker BioSpin

Quantitative NMR [nmrq], [nmrquant] Scenario 2a: components plus weights

Quantitative NMR [nmrq], [nmrquant] Scenario 2a: components plus weights

The puri	ty of the Int	ernal Stan	dard (Ko	ffein) is	100.0 % (w	/w)
	_					
Component	-	Integral			Compore	
	% (w/w)		of H	(g/mol)	mass (1	ng)
n	0.740	0 0000		200 400	0 00 20	
Probe X	9.748	2.0000				
Koffein	100.000	2.9296	1	. 194.190	0 14.4	000
'Probe X	compared to	'Koffein'	has a pu	crity of 9.	748 % (w/w))
No Low	High	Slope	Bias	Integral	Obs-Calc	Number
No Low	High	Slope	Bias	Integral	Obs-Calc	Number of H
No Low	High	Slope	Bias	Integral	Obs-Calc	
	High 581 7.494	Slope 0.000	Bias 0.000	Integral 2.9296	0bs-Calc	
1 7.	 581 7.494	0.000	0.000	2.9296	0.000	of H
1 7.						of н 1

Quantitative NMR [nmrq], [nmrquant] Scenario 2b: components plus weights

Quantitative NMR [nmrq], [nmrquant] Scenario 2b: components plus weights

9								
10	The	purity (of the Inte	rnal Stand	lard (Ko	ffein) is	100.0 % (w/w)
11								
12	Comp	ponent	Assay	Integral	Number	Mw	Component	
13			% (w/w)		of H	(g/mol)	mass (mg)	
14								
15	Prol	be X	9.477	0.9722	1	382.420	99.3000	
16	Prol	be X	9.748	2.0000	2	382.420	99.3000	
17	Prol	be X	9.415	0.9659	1	382.420	99.3000	
18	Prol	be X	9.506	0.9752	1	382.420	99.3000	
19	Prol	be X	9.458	1.9406	2	382.420	99.3000	
20	Kof	Eein	100.000	2.9296	1	194.190	14.4000	
21								
22	The	purity	of 'Probe X	(' is 9.	521 % (w	/w), SD= 0	.13 % (w/w),	RSD= 1.38 %
23								
24								
25	No	Low	High	Slope	Bias	Integral	Obs-Calc	Number
26								of H
27								
28	1	7.581	7.494	0.000	0.000	2.9296	0.000	1
29	2	7.227	7.178	0.000	0.000	0.9722	0.009	1
30	3	7.097	6.943	0.000	0.000	2.0000	-0.037	2
31	4	6.771	6.728	0.000	0.000	0.9659	0.015	1
32	5	6.598	6.555	0.000	0.000	0.9752	0.006	1
33	6	5.786	5.739	0.000	0.000	1.9406	0.022	2

Quantitative NMR [nmrq], [nmrquant] Scenario 3: components plus weights

10

Bruker BioSpin

MNMR Quantitative Analysis Matrix Enter proton contribution for samples in integral region, Enter additional information for components 0.1766 172.5241 55.4305 3.1643 Molecular Wt/g 100.0 55.3677 2.1948 171.6891 Component Wt /mg Purity of Internal Standard 328.88 probe X 0 3 0 0 0 11,3738 11.3738 Isopropanol 0 0 60.1 Methanol 32.04 11.3738 0 0 0 0 0 1.0 3.4879 Internal Standard 0 0 2 0 0 116.07 <u>0</u>K <u>C</u>ancel [mag]

Quantitative NMR [nmrq], [nmrquant] Scenario 3: components plus weights

10							
11	The purity of the I	nternal Sta	ndard is 10)0.0 % (w/	w)		
12							
13	Component	Assay	Integral	Number	Mw	Component	
14		8 (w/w)		of H	(g/mol)	mass (mg)	
15		/					
16	probe X	99.939	172.5241	3	328.880	11.3738	
17	probe X	96.219	55.3677	1	328.880	11.3738	
18	probe X	96.328	55.4305	1	328.880	11.3738	
19	probe X	99.455	171.6891	3	328.880	11.3738	
0.9	Isopropanol	0.116	2.1948	6	60.100	11.3738	
1	Methanol	0.179	3.1643	3	32.040	11.3738	
22	Internal Standard	100.000	100.0000	2	116.070	3.4879	
3							
4	The purity of 'prob	e X' is	97.	985 % (w/	w), SD= 1.	.99 % (w/w) , RSI)= 2.03 %
25	The purity of 'Isop	ropanol' is	0.	116 % (w/	w)		
6	The purity of 'Meth	anol' is	0.	179 % (w/	w)		
7							

Quantitative NMR [nmrq], [nmrquant] in Automation

The toolbar contains 2 additional buttons:

- Implements the command "Calculate tabulated data and show report". It runs a quantitative analysis using tabulated data, stored in nmrquant.txt (format see below). The result is being displayed in the system notepad and stored in a quant file. The internal format of the tabulated data file is in Appendix A.
- Implements the "Save Automated calculation file" button: Enables storing of the tabulated data in an arbitrary file. The file contents can be calculated using the kernel nmrquant application by means of the "nmrqa" command.

nmrqa command syntax

nmrqa – the command without arguments performs the quantitative analysis within the opened data set using default file name "nmrquant.txt" as a source of the tabulated data and "quant" as an output file.

nmrqa "input filename" <"output filename"> - performs the quantitative analysis within the opened data set using input_filename as a source of the tabulated data and output filename or "quant" as an output file. nmrga "directory name" – the command performs the quantitative analysis from any location. The directory should contain default file "nmrquant.txt" as a source of the tabulated data and "quant" file will be created as an output file.

nmrga "input path name" <"output pathname"> - the command performs the quantitative analysis from any location. The directory should contain file input path name as a source of the tabulated data and output_pathname or "quant" file will be created as an output file.

nmrqa command generates prompts, if any necessary file absent or syntax is wrong, but it doesn't hangs an application. All the syntax errors within the input data file are being stored in the output file.

A sample of the file content is shown below.

It is similar to internal nmrquant data format, so the user can create draft the nmrquant file using the internal component matrix editor.

The file may contain several tables, delimited with START and END lines.

The first value is a number of integrals. The next one is a list of the integral values, delimited with ":" symbols.

The next integer value defines the number of components. The component description has a following format:

"Title": "Molecular weight": "Component weight".

The undefined values should be equal to 0.0.

The component table followed by proton array, which define contribution to a corresponding integral.

The line number corresponds to a sample number (in a sample the 1:0:1... line describes the proton contribution of the sample 1 and the 0:1:0... line describes the proton contribution of the sample 2), the number of array's elements should be equal to a number of integrals. "Foreign's integrals" should be filled with the zero number of protons, like in component table of the nmrquant application.

If the component description

block contains an error, the corresponding warning appears in a report and does not stop calculations on other blocks.

Nmrquant.txt file sample


```
START
12
19.3481:1.14:19.53:19.4955:1.1168:1.2597:3.6792:40.75:60.72750:39:39:58.88
sample 1:139.22:10
sample 2:126.11:1
1:0:1:1:0:0:0:2:3:2:2:3
0:1:0:0:1:1:2:0:0:0:0:0
END
START
10
19.3481:1.14:19.53:19.4955:1.1168:1.2597:3.6792:40.75:60.72750
Sample 3:139.22:0
Sample 4:126.11:0
1:0:1:1:0:0:0:2:3:2
0:1:0:0:1:1:2:0:0:0
END
```